Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration
نویسندگان
چکیده
Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants.
منابع مشابه
[The combined use of bisphosphonates and strontium ranelate with osseosubstituting materials].
In review the possibility of biomaterials osseointegration improvement with help of bisphosphonates or strontium ranelate is discussed. For this purpose, they are added to hydroxyapatite used for implants coating, or are included as a component of bulk calcium phosphate materials. Strontium is employed as a compound of biodegradable metal alloys, also. Combined use of carrier (implant) with bis...
متن کاملBiodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance
Magnesium-Calcium (Mg-Ca) alloy has received considerable attention as an emerging biodegradable implant material in orthopedic fixation applications. The biodegradable Mg-Ca alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the...
متن کاملA Review of Titanium Zirconium (TiZr) Alloys for Use in Endosseous Dental Implants
Dental implants made from binary titanium-zirconium (TiZr) alloys have shown promise as a high strength, yet biocompatible alternative to pure titanium, particularly for applications requiring small diameter implants. The aim of this review is to summarize existing literature reporting on the use of binary TiZr alloys for endosseous dental implant applications as tested in vitro, in animals and...
متن کاملIn vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys
Zinc and zirconium were selected as the alloying elements in biodegradable magnesium alloys, considering their strengthening effect and good biocompatibility. The degradation rate, hydrogen evolution, ion release, surface layer and in vitro cytotoxicity of two Mg-Zn-Zr alloys, i.e. ZK30 and ZK60, and a WE-type alloy (Mg-Y-RE-Zr) were investigated by means of long-term static immersion testing i...
متن کاملSecurity assessment of magnesium alloys used as biodegradable implant material.
The security risk of magnesium alloys used as biodegradable implant material was evaluated in this study. Dose-response assessment was conducted by using toxicological data from authoritative public health agencies (World Health Organization) and assuming 1~3 years of uniform corrosion. Through modification calculation, the tolerable corrosion rate of biodegradable magnesium alloys in vivo was ...
متن کامل